What makes the ocean circulate?
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« Vallis (2012) Climate and the Oceans
 Vallis (2006) Atmospheric and Oceanic Fluid Dynamics

 Dommenget (2014) Lecture notes
http://users.monash.edu.au/~dietmard/teaching/dommenget.climate.dynamics.notes.pdf
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Figure 2.2. The annual average temperature at the ocean surface, in
degrees centigrade. Adapted from World Ocean Atlas, 2009 of the
National Oceanic and Atmospheric Administration (http://www.nodc
.noaa.gov/OC5/WOA09/pr_woa09.html).

Source:Vallis (2012) Climate and the oceans



Surface temperature in February
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Figure 6.108: Surface temperature February: Note, that the northern North Atlantic (around 60°N)
is much warmer than all other regions on the same latitude, which indicates that it is heating the
other regions.
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Figure 2.4. The zonally averaged density in the Atlantic Ocean. Note
the break in the vertical scale at 1,000 m.’
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Vertical structure of the ocean
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Figure 2.5. Schematic of the vertical structure of the
ocean, emphasizing the mixed layer. In the mixed
layer, typically 50-100 m deep, turbulence and con-
vection act to keep the temperature relatively uniform
in the vertical. Below this layer, temperature changes
over a depth of a few hundred meters, in the thermo-

cline, before becoming almost uniform at depth, in the
abyss. Adapted from Marshall and Plumb, 2007.
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Wind-driven ocean circulation
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Figure 2.3. A schematic of the main surface currents of the world’s
oceans. The panel at the left shows the zonally averaged zonal (i.e.,
east—west) surface winds.
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Westward propagation of Rossby waves
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Figure 4.5. If parcel A is displaced northward, then its clockwise spin
increases, causing the northward displacement of parcels that are to
the west of A. A similar phenomenon occurs if parcel B is displaced
south. Thus, the initial pattern of displacement propagates westward.

Absolute vorticity (spin) is conserved consisting of relative vorticity
(clockwise) and planetary vorticity (anticlockwise)
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Changing topography
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Figure 2.1. Schematic of the configuration of the oceans and
continents over the past 225 million years, since the breakup of the
supercontinent Pangea. Source: Adapted from USGS (http://pubs

.usgs.gov/gip/dynamic/historical. html).
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Some numbers

Ocean covers 70% of the Earth surface

57% of the oceans are in the Southern Hemisphere (80%
ocean)

Average depth 3.7 km

Volume of the ocean 1.3x101® m3 (density of sea water
1.03x10° kg m3)

Total mass of the ocean 1.4x10%! kg
Mass of the atmosphere 5x1018 kg

Specific heat of seawater 4,180 J kgt K-1 resulting in an
overall heat capacity of the ocean which is 1,000 times
that of the atmosphere (ocean’s moderating effect on
climate)

Source:Vallis (2012) Climate and the oceans 13



Ocean conveyor belt
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Transports in the ocean

1 Sv =10°m?3 s-1(Harald Sverdrup)

Antarctic Circumpolar Current (ACC) 120 Sv (in some
places up to 150 Sv)

Gulf Stream (30 Sv off the coast of Florida, 150 Sv at
Cape Hatteras in North Carolina)

Amazon River 0.2 Sv

® All the world‘s rivers into the ocean 1 Sv

® Westerly winds in the atmosphere carry up to 500 Sv
of air

Source:Vallis (2012) Climate and the oceans 15



What makes the ocean circulate?

® wind: (1) wind-driven gyres, (2) wind plays also a role
for the interhemispheric MOC (upwelling)

® Buoyancy effects (temperature, salinity)

® Mixing brings heat down to the abyss at low latitudes
and enables an overturning circulation to be
maintained

— Mixing warms the deep water at low latitudes, which
may then rise through the thermocline, maintaining a
circulation of sinking at high latitudes and rising at low
latitudes.

— Strong westerly winds in the Antarctic Circumpolar Cur-
rent can draw water up from the deep and induce an in-
terhemispheric circulation, which is particularly strong
in the Atlantic.
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Figure 4.6. Schema of the two main components of the MOC. Top:
The mixing-maintained circulation. Dense water at high latitudes
sinks and moves equatorward, displacing warmer, lighter water. The
cold, deep water is slowly warmed by diffusive heat transfer (mixing)
from the surface in mid- and low latitudes, enabling it to rise and
maintain a circulation. Bottom: Winds over the Antarctic Circum-
polar Current (outlined by dashed lines) pump water northward, and
this pumping enables deep water to rise and maintain the circulation.
In the absence of both wind and mixing, the abyss would fill up with
the densest available water and the circulation would cease.

Source:Vallis (2012) Climate and the oceans
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Antarctic Circumpolar Current
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Driving mechanisms of the meridional
overturning circulation (MOC)

® If there would be no mixing (turbulent diffusion
generated by mechanical forcing —wind and tides)
and no upwelling around Antartica (Ekman transport),
the ocean would be in the ,,cold death* steady state

® In today’‘s climate, the circulation is thermally driven,
rather than salt driven

® Salinity explains the difference between the MOC of
the Atlantic (NA is saltier) and the Pacific

Source:Vallis (2012) Climate and the oceans 20



Atlantic Ocean‘s MOC
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Figure 4.8. Schematic of the meridional overturning circulation,
most applicable to the Atlantic Ocean (D.P. indicates the Drake
Passage, the narrowest part of the ACC). The arrows indicate water
flow, and dashed lines signify water crossing constant-density sur-
faces, made possible by mixing. The upper shaded area is the warm
water sphere, including the subtropical thermocline and mixed layer,
and the lower shaded region is Antarctic Bottom Water. The bulk of
the unshaded region in between is North Atlantic Deep Water.

Source:Vallis (2012) Climate and the oceans
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Time scales

® Currents in the abyssal ocean 1 mm s, i.e. it takes 300
years for a parcel from ist high-latitude source to move to
the equator

® If the surface conditions change, it will take several
hundred years for the deep ocean to re-equilibrate
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Buoyancy-driven ocean circulation
- a schema of sideways convection
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Buoyancy-driven ocean circulation
- sideways convection

® Rayleigh number: ratio between buoyancy forcing and
Viscous term

® Prandtl number: ratio between viscosity and
diffusivity (seawater Pr=7)

® Aspect ratio: ratio between H and L

Source:Vallis (2006) 24



Streamfunction of two-dimensional
sideways convection for Raleigh numbers
104, 10° and 108

¢

Source:Vallis (2006)

25



Corresponding temperature or buoyancy
field
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Atlantic Ocean‘s MOC
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Figure 4.8. Schematic of the meridional overturning circulation,
most applicable to the Atlantic Ocean (D.P. indicates the Drake
Passage, the narrowest part of the ACC). The arrows indicate water
flow, and dashed lines signify water crossing constant-density sur-
faces, made possible by mixing. The upper shaded area is the warm
water sphere, including the subtropical thermocline and mixed layer,
and the lower shaded region is Antarctic Bottom Water. The bulk of
the unshaded region in between is North Atlantic Deep Water.

Source:Vallis (2012) Climate and the oceans
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Paleo-climate variability

a T T T T
-34} 1 0
—_ I 20459 — A7, ., 12~ T T T T T T
R 18§15 1q ko | 76, 43 2 ~
o _38 9 _q
(va]
w
—42| =20
H.5 [ ] H1
| 1 1 .I
100 80 60 40 20 0
Age (kyr Rapid Climate Change

Temperature (degrees C)

Source: Dommenget (2014)

-60

Central Greenland Climate

Younger Dryas

o

5 1.0 15
Thousand years before present



MOC in the North Atlantic at different climate

Source: Dommenget (2014)
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Simple box models:
Stommel‘s two-box model (1961)

Source: Dommenget (2014)

30



Surface temperature in February
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Surface salinity

Source: Dommenget (2014)
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source:

Net evaporation
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Dommenget (2014)
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Two competing regimes in Stommel‘s two-

box model
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Stommel‘s two-box model
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Stommel‘s two-box model
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Graphical solution of the two-box model.
a. (y=5, 6=1/6, y=1.5), b: (y=1, 0=1/6, u=1.5), c: (y=5, 6=1/6, u=0.75)

Source: Vallis (2006) 37



